正经人谁猜啊,我直接打开UniProt直接搜索NtNRT1.2蛋白,还真搜到了。
提交名称NRT1.2,由烟草(Common tobacco)NtNRT1.2-s基因表达,定位于膜,参与硝酸盐的跨膜运输,铵态氮的系吸收。也有证据表明其可能参与磷酸根离子和寡肽的运输。
进一步,我们又发现一篇刊于《frontiers in Plant Science》2018; 9: 210的文献,看了看这篇文献的作者,我一瞬间明白了我们可爱的刘老师为啥让我们做NtNRT1.2的GUS染色(Liu et al., 2018)。
通过不同的氮处理下,间隔一段时间测定烟草根系和叶片中的NtNRT1.2的表达,可以发现NtNRT1.2对于氮具有一定的反应,特别是硝态氮,随着硝态氮的输入,NtNRT1.2在一段时间后显著表达,且这种表达会受到氮缺乏的抑制(图4),因此不难猜测NtNRT1.2应当参与了植物根系硝酸盐反应
对植物根系一天内不同时间段内的NtNRT1/2的基因表达的测定表明NtNTR1.2在6:00与8:00达到表达高峰(图5),考虑到植物在夜间需要进行活跃的碳水化合物同化,此过程需要大量的氮素提供,因此这暗示我们NtNRT1.2应当与氮的吸收和运输相关
更进一步,通过在拟南芥nrt1.1-1突变体内转入NtNRT1.1与NtNRT1.2 的基因来验证其基因功能。半定量RT-PCR证明了NtNRT1.1/1.2在拟南芥中的表达,通过拟南芥叶片和根系鲜重的测定(图6),证明了NtNRT1.1/1.2显著提高突变体生长状况,间接证明了NtNRT1.2参与植物根系硝酸盐的吸收。
参考文献
Liu, L. H., Fan, T. F., Shi, D. X., Li, C. J., He, M. J., Chen, Y. Y., . . . Sun, Y. C. (2018). Coding-Sequence Identification and Transcriptional Profiling of Nine AMTs and Four NRTs From Tobacco Revealed Their Differential Regulation by Developmental Stages, Nitrogen Nutrition, and Photoperiod. Front Plant Sci, 9, 210. doi:10.3389/fpls.2018.00210
在对拟南芥的干旱胁迫实验便已发现,这个胁迫记忆具有一定程度上的可遗传性,对于环境引起的可遗传的性状,一个常用的解释方向便是表观遗传。因此研究开始关注表观遗传与干旱胁迫记忆的关系。
基于这个前提和假设,在对拟南芥的保水性状基因的研究上更近一步,使用一类组蛋白H3K4me3的甲基转移酶atx1,抑制组蛋白上的甲基化过程。通过实验发现,两类基因的表达量都发生了显著降低(Ding et al., 2012)(图6),这可以说明表观遗传过程(或者说甲基化过程)参与到了与胁迫记忆有关的基因的调控中。
在这时,MSH基因的发现,为研究植物干旱胁迫记忆提供了全新的工具。在植物干旱胁迫的过程中发现了MSH1基因的表达显著变化,随着进一步的研究发现MSH1对控制叶绿体和线粒体的基因温度性具有重要作用,且这种作用是通过控制叶绿体和线粒体基因的表观遗传实现。通过使用Ti质粒插入msh1基因(msh1-TDNA)、对msh1基因进行基因沉默(msh1-RNAi)构建拟南芥,与野生型(WT)以及具有胁迫记忆的拟南芥(msh1-memory)进行比较,通过测定发现在具有胁迫记忆的拟南芥植株中,msh1的表达显著降低(图7a、b);更近一步,通过5-氮杂胞苷(DNA甲基化的一种抑制剂)处理上述的四类拟南芥植株,发现由msh1表达差异导致的表型差异(叶面积)消失(图7c、d),至此确认MSH1记忆通过甲基化作用影响植物干旱胁迫记忆(Yang et al., 2020)。
经过一系列的研究,科学家给出了MSH1控制表观遗传的机理,即外界胁迫(如干旱)抑制MSH1基因表达,从而导致线粒体内基因的DNA重排,分泌PEP至叶绿体,叶绿体产生WHY1至细胞核,细胞核接受信号介导细胞核的DNA甲基化(图8),从而使得植物在表观遗传上做出响应。(Mackenzie & Kundariya, 2020)
3.其他机理
除去信号物质的积累和表观遗传变化,植物干旱胁迫记忆或者广义上的植物胁迫记忆涉及到如植物激素、FLC基因(图9),这里便不进行展开。(Peter A. Crisp,Diep Ganguly, 2016)
四、干旱胁迫记忆的意义
植物建立的干旱胁迫记忆,一方面,使得其叶面积减少、保水能力增强,提升其在多变气候条件下的生存能力;另一方面,有研究指出干旱胁迫记忆的产生可以会对植物的生殖产生影响,从而提高整个群落在不稳定环境的生存能力。
这一作用过程可能涉及到MSH1基因的表达,且最先在烟草中观察到。通过基因沉默技术构建MSH1基因沉默的烟草,通过电泳验证了两者在MSH1基因表达上的差异,实验得到MSH1基因沉默的烟草植株生长功能受到抑制而导致雄性不育(图10)(Ajay Pal S. Sandhu, 2007)。在拟南芥的研究中也发现MSH1基因抑制而导致的雄性不育(Mackenzie & Kundariya, 2020),这种对于胁迫的响应,我们将其理解为群体为了适应不稳定且恶劣的自然环境,而减少后代中的雄性个体,增加雌性个体,以增强后代群体的生殖能力,以便于整个群体的存活。
有研究已经指出,通过将野生植株与MSH1表达抑制的植株体作为砧木(即具有胁迫记忆的植株)进行嫁接,得到的植株具有更高的活力(图11),且这种活力可遗传而可以扩大到田生产(Kundariya et al., 2020)。
3.指导农业生产
在农业生产中,沟灌是常常使用的一项沟灌技术,而干湿交替沟灌(SWDFI)、固定干湿沟灌(FWDFI)与传统沟灌法(TFI)相比(图12)具有更好的效果而被广泛采用,而其原理都为人为的制造局部干旱胁迫。有研究指出,干湿交替沟灌与传统沟灌相比在相同的灌溉水平下具有更高的产量和品质,且植物的水利用效率更高(Sarker et al., 2016)。
参考文献
Ajay Pal S. Sandhu, R. V. A., and Sally A. Mackenzie. (2007). Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. PNAS, February 6, 2007 104 (6) 1766-1770.
Conrath, U. (2011). Molecular aspects of defence priming. Trends Plant Sci, 16(10), 524-531. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21782492. doi:10.1016/j.tplants.2011.06.004
Ding, Y., Fromm, M., & Avramova, Z. (2012). Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun, 3, 740. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22415831. doi:10.1038/ncomms1732
Kinoshita, T., & Seki, M. (2014). Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol, 55(11), 1859-1863. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25298421. doi:10.1093/pcp/pcu125
Kundariya, H., Yang, X., Morton, K., Sanchez, R., Axtell, M. J., Hutton, S. F., . . . Mackenzie, S. A. (2020). MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat Commun, 11(1), 5343. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/33093443. doi:10.1038/s41467-020-19140-x
Lindgren, M. (2014). Climate Change 2014 Synthesis Report Summary for PolicymakersChapter. IPCC, AR5.
Mackenzie, S. A., & Kundariya, H. (2020). Organellar protein multi-functionality and phenotypic plasticity in plants. Philos Trans R Soc Lond B Biol Sci, 375(1790), 20190182. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31787051. doi:10.1098/rstb.2019.0182
Peter A. Crisp,Diep Ganguly, S. R. E., Justin O. Borevitz and Barry J. Pogson. (2016). Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Science Advances, Vol. 2, no. 2, e1501340.
Sarker, K. K., Akanda, M. A. R., Biswas, S. K., Roy, D. K., Khatun, A., & Goffar, M. A. (2016). Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability. Journal of Integrative Agriculture, 15(10), 2380-2392. doi:10.1016/s2095-3119(16)61370-9
Yang, X., Sanchez, R., Kundariya, H., Maher, T., Dopp, I., Schwegel, R., . . . Mackenzie, S. A. (2020). Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming. Nat Commun, 11(1), 2214. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32371941. doi:10.1038/s41467-020-16036-8
最近考试超多的好嘛,卷起来了,但又没完全卷。今天看了篇分子生物学的文章,觉得还挺有趣的,按自己的思路便写写看。文章为2020年的nature plants,题为Transfer cells mediate nitrate uptake to control root nodule symbiosis(具体见参考文献文献)
摘要
根瘤共生为植物提供了固氮的能力,从而提高作物产量。环境硝酸盐水平影响着根系结瘤和固氮,但是豆科植物调节硝酸盐吸收以调节根瘤共生的机制仍不清楚。通过鉴定苜蓿NPF家族的一个成员NPF7.6,观察到NPF7.6在根瘤维管组织中特异性表达,且定位于根瘤转移细胞的质膜上,在那里NPF7.6起到高亲和硝酸盐转运体的作用。进一步通过构建NPF7.6的突变体,使得突变体在根瘤维管组织发育异常,且表现出硝酸盐吸收减少、一氧化氮稳态紊乱和固氮酶活性减弱,基于此提出了NPF7.6参与根瘤调控的机制。(Wang et al., 2020)
在拟南芥中,鉴定出两个硝酸盐转运家族NRT1、NRT2,前者更名为NPF家族。NPF家族的功能已经过大量的研究,在如uniprot在线平台可以检索其家族蛋白质的功能。对于NPF家族的功能研究,主要有以下方面:NPF在结节形成、结节器官发生中起核心作用;是表皮细胞中诱导皮层细胞分裂导致结节原基形成所必需的(Rival et al., 2012);NPF参与结瘤前识别根瘤菌的第一步(Amor B.B., 2003);NPF在根瘤与苜蓿根瘤菌共生期间需要通过触发感染线并将细菌释放到发育中的根瘤感染区的细胞质中(Moling et al., 2014)。
在拟南芥、水稻、玉米等作物中发现了大量的NPF家族基因,它们在硝酸盐吸收上都发挥着类似功能,这也为我们提供了研究基因功能的思路,先寻找同源基因的功能并基于此猜测和验证基因功能。
六、参考文献
Amor B.B., S. S. L., Oldroyd G.E.D., Maillet F., Penmetsa R.V., Cook D., Long S.R., Denarie J., Gough C. (2003). The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. the plant journal, 34(4), 495-506.
Moling, S., Pietraszewska-Bogiel, A., Postma, M., Fedorova, E., Hink, M. A., Limpens, E., . . . Bisseling, T. (2014). Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. Plant Cell, 26(10), 4188-4199. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25351493. doi:10.1105/tpc.114.129502
Rival, P., de Billy, F., Bono, J. J., Gough, C., Rosenberg, C., & Bensmihen, S. (2012). Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. Development, 139(18), 3383-3391. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22874912. doi:10.1242/dev.081620
Wang, Q., Huang, Y., Ren, Z., Zhang, X., Ren, J., Su, J., . . . Kong, Z. (2020). Transfer cells mediate nitrate uptake to control root nodule symbiosis. Nat Plants, 6(7), 800-808. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/32514144. doi:10.1038/s41477-020-0683-6
1、Janssen B.H., Guiking F.C.T., van der Eijk D., et al. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). 1990, 46(4):299-318.
2、D.A. Horneck, D.M. Sullivan, J.S. Owen, and J.M. Hart.Soil Test Interpretation Guide.2011,Affiliation: Oregon Cooperative Extension,EC1478.
3、E.S. Marx, J. Hart, and R.G. Stevens.Soil TestInterpretation Guide.1999,Affiliation: Oregon Cooperative Extension,EC1478.
4、R.L. Westerman.Soil Testing and Plant Analysis, Volume 3, Third Edition.1990,the Soil Science Society of America.
5、Dhotare, V. A., Guldekar, V. D., Bhoyar, S. M., & Ingle, S. N. (2019). Evaluation of Soil Nutrient Index and their Relation with Soil Chemical Properties of Washim Road Farm of Dr.PDKV Akola, Maharashtra, India. International Journal of Current Microbiology and Applied Sciences, 8(09), 1773-1779. doi:10.20546/ijcmas.2019.809.205
7、R. A. Viscarra Rossel and A. B. McBratney.Soil chemical analytical accuracy and costs: implications from precision agriculture.1998,Australian Journal of Experimental Agriculture 38(7) 765 - 775
RXSA = Cross section area
TCA = Cortex area
TSA = Stele area
RatioCtoS = Cortex:Stele ratio
RatioCtoXS = Cortex:Cross Section ratio
RatioStoXS = Stele:Cross Section ratio
AA = Aerenchyma area
percCisA = Percentage of cortex that is aerenchyma
nonAA = Total cortex area - AA
MXVA = Metaxylem vessel area
percSisMX = Percentage of stele that is metaxylem
percXSisMX = Percentage of cross section that is metaxylem
MX_mean = Mean metaxylem size
MX_median = Median metaxylem size
MX_min = Minimum metaxylem size
MX_max = Maximum metaxylem size
MX_num = Number of metaxylem vessels
CF_num = Number of cell files
CCA = Cortex cell area
percCisCC = Percentage of cortex that is cortical cells
percXSisCC = Percentage of cross section that is cortical cells
CC_mean = Mean cortical cell size
CC_median = Median cortical cell size
CC_num = Number of cortical cells
Z0andEpi_mean = Mean of all cells in zone zero and the epidermis
Z0_mean = Mean of all cells in zone zero (edge)
Z1_mean = Mean of all cells in zone one (middle)
Z2_mean = Mean of all cells in zone two (center)
Z0andEpi_median = Median of all cells in zone zero and the epidermis
Z0_median = Median of all cells in zone zero (edge)
Z1_median = Median of all cells in zone one (middle)
Z2_median = Median of all cells in zone two (center)
Z0andEpi_num = Number of all cells in zone zero and the epidermis
Z0_num = Number of all cells in zone zero (edge)
Z1_num = Number of all cells in zone one (middle)
Z2_num = Number of all cells in zone two (center)
LA_mean = Mean lacunae size
LA_median = Median lacunae size
LA_min = Minimum lacunae size
LA_max = Maximum lacunae size
LA_num = Number of lacunae
Files start counting from 0 at the epidermis
Ratings indicate image quality, 0 the worst, 10 the best
Digital Imaging of Root Traits(DIRT)是一个使用DIRT成像协议计算70多种表型特征的计算机平台,其主要思路是通过计算机处理根系图片给出表型特征,这种方法作为2014年10月的Plant Physiology的封面,其软件平台2015年11月上线PlantMethods。
具体的测定表型特征可见官方入门手册
Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. science, 330(6001), 192-196.
Cao, H., Sun, H., Yang, H., Sun, B., & Zhao, Q. (2003). A review: soil enzyme activity and its indication for soil quality. Chinese journal of applied and environmental biology, 9(1), 105-109.
Ge, T., Wei, X., Razavi, B. S., Zhu, Z., Hu, Y., Kuzyakov, Y., . . . Wu, J. (2017). Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biology and Biochemistry, 113, 108-115. doi:10.1016/j.soilbio.2017.06.005
German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., & Allison, S. D. (2011). Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43(7), 1387-1397. doi:10.1016/j.soilbio.2011.03.017
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., . . . Zhang, F. S. (2010). Significant Acidification in Major Chinese Croplands. science, 327(5968), 1008-1010. Retrieved from https://science.sciencemag.org/content/sci/327/5968/1008.full.pdf. doi:10.1126/science.1182570
Kawasaki A, D. S., Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016). Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One, 11:e0164533.
Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184-199. doi:10.1016/j.soilbio.2015.01.025
Kuzyakov, Y., & Razavi, B. S. (2019). Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 135, 343-360. doi:10.1016/j.soilbio.2019.05.011
Liu, S., Razavi, B. S., Su, X., Maharjan, M., Zarebanadkouki, M., Blagodatskaya, E., & Kuzyakov, Y. (2017). Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms. Soil Biology and Biochemistry, 112, 100-109. doi:10.1016/j.soilbio.2017.05.006
Ma, X., Liu, Y., Zarebanadkouki, M., Razavi, B. S., Blagodatskaya, E., & Kuzyakov, Y. (2018). Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology. Biology and Fertility of Soils, 54(7), 819-828. doi:10.1007/s00374-018-1305-6
Ma, X., Mason-Jones, K., Liu, Y., Blagodatskaya, E., Kuzyakov, Y., Guber, A., . . . Razavi, B. S. (2019). Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots. Soil Biology and Biochemistry, 135, 420-428. doi:10.1016/j.soilbio.2019.06.001
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., . . . Marinari, S. (2012). Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils, 48(7), 743-762. doi:10.1007/s00374-012-0723-0
Nobuo Watanabe, D. A. D., Rui-Ming Liu, Henry Jay Forman. (2004). Quinones and Glutathione Metabolism.
Razavi, B. S., Zarebanadkouki, M., Blagodatskaya, E., & Kuzyakov, Y. (2016). Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 96, 229-237. doi:10.1016/j.soilbio.2016.02.020
Razavi, B. S., Zhang, X., Bilyera, N., Guber, A., & Zarebanadkouki, M. (2019). Soil zymography: Simple and reliable? Review of current knowledge and optimization of the method. Rhizosphere, 11. doi:10.1016/j.rhisph.2019.100161
Sinsabaugh, R. L., Belnap, J., Findlay, S. G., Shah, J. J. F., Hill, B. H., Kuehn, K. A., . . . Warnock, D. D. (2014). Extracellular enzyme kinetics scale with resource availability. Biogeochemistry, 121(2), 287-304. doi:10.1007/s10533-014-0030-y
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., . . . Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecol Lett, 11(11), 1252-1264. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18823393. doi:10.1111/j.1461-0248.2008.01245.x
Spohn, M., & Kuzyakov, Y. (2013). Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – Coupling soil zymography with 14C imaging. Soil Biology and Biochemistry, 67, 106-113. doi:10.1016/j.soilbio.2013.08.015
Tian, P., Razavi, B. S., Zhang, X., Wang, Q., & Blagodatskaya, E. (2020). Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry, 141. doi:10.1016/j.soilbio.2019.107662
Wei, X., Ge, T., Zhu, Z., Hu, Y., Liu, S., Li, Y., . . . Razavi, B. S. (2018). Expansion of rice enzymatic rhizosphere: temporal dynamics in response to phosphorus and cellulose application. Plant and Soil, 445(1-2), 169-181. doi:10.1007/s11104-018-03902-0
Zhu, Z., Ge, T., Liu, S., Hu, Y., Ye, R., Xiao, M., . . . Wu, J. (2018). Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO 2 and CH 4 emissions. Soil Biology and Biochemistry, 116, 369-377. doi:10.1016/j.soilbio.2017.11.001