#the first way
install.packages("ggtree")
#一般情况下rstudio默认的源里面是找不到ggtree
#因此可以通过BiocManager下载
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ggtree")
#具体参数如下
Layer Description
geom_balance highlights the two direct descendant clades of an internal node
geom_cladelabel annotate a clade with bar and text label
geom_facet plot associated data in specific panel (facet) and align the plot with the tree
geom_hilight highlight selected clade with rectanglar or round shape
geom_inset add insets (subplots) to tree nodes
geom_label2 modified version of geom_label, with subsetting supported
geom_nodepoint annotate internal nodes with symbolic points
geom_point2 modified version of geom_point, with subsetting supported
geom_range bar layer to present uncertainty of evolutionary inference
geom_rootpoint annotate root node with symbolic point
geom_rootedge add root edge to a tree
geom_segment2 modified version of geom_segment, with subsetting supported
geom_strip annotate associated taxa with bar and (optional) text label
geom_taxalink Linking related taxa
geom_text2 modified version of geom_text, with subsetting supported
geom_tiplab layer of tip labels
geom_tippoint annotate external nodes with symbolic points
geom_tree tree structure layer, with multiple layout supported
geom_treescale tree branch scale legend
正经人谁猜啊,我直接打开UniProt直接搜索NtNRT1.2蛋白,还真搜到了。
提交名称NRT1.2,由烟草(Common tobacco)NtNRT1.2-s基因表达,定位于膜,参与硝酸盐的跨膜运输,铵态氮的系吸收。也有证据表明其可能参与磷酸根离子和寡肽的运输。
进一步,我们又发现一篇刊于《frontiers in Plant Science》2018; 9: 210的文献,看了看这篇文献的作者,我一瞬间明白了我们可爱的刘老师为啥让我们做NtNRT1.2的GUS染色(Liu et al., 2018)。
通过不同的氮处理下,间隔一段时间测定烟草根系和叶片中的NtNRT1.2的表达,可以发现NtNRT1.2对于氮具有一定的反应,特别是硝态氮,随着硝态氮的输入,NtNRT1.2在一段时间后显著表达,且这种表达会受到氮缺乏的抑制(图4),因此不难猜测NtNRT1.2应当参与了植物根系硝酸盐反应
对植物根系一天内不同时间段内的NtNRT1/2的基因表达的测定表明NtNTR1.2在6:00与8:00达到表达高峰(图5),考虑到植物在夜间需要进行活跃的碳水化合物同化,此过程需要大量的氮素提供,因此这暗示我们NtNRT1.2应当与氮的吸收和运输相关
更进一步,通过在拟南芥nrt1.1-1突变体内转入NtNRT1.1与NtNRT1.2 的基因来验证其基因功能。半定量RT-PCR证明了NtNRT1.1/1.2在拟南芥中的表达,通过拟南芥叶片和根系鲜重的测定(图6),证明了NtNRT1.1/1.2显著提高突变体生长状况,间接证明了NtNRT1.2参与植物根系硝酸盐的吸收。
参考文献
Liu, L. H., Fan, T. F., Shi, D. X., Li, C. J., He, M. J., Chen, Y. Y., . . . Sun, Y. C. (2018). Coding-Sequence Identification and Transcriptional Profiling of Nine AMTs and Four NRTs From Tobacco Revealed Their Differential Regulation by Developmental Stages, Nitrogen Nutrition, and Photoperiod. Front Plant Sci, 9, 210. doi:10.3389/fpls.2018.00210
RXSA = Cross section area
TCA = Cortex area
TSA = Stele area
RatioCtoS = Cortex:Stele ratio
RatioCtoXS = Cortex:Cross Section ratio
RatioStoXS = Stele:Cross Section ratio
AA = Aerenchyma area
percCisA = Percentage of cortex that is aerenchyma
nonAA = Total cortex area - AA
MXVA = Metaxylem vessel area
percSisMX = Percentage of stele that is metaxylem
percXSisMX = Percentage of cross section that is metaxylem
MX_mean = Mean metaxylem size
MX_median = Median metaxylem size
MX_min = Minimum metaxylem size
MX_max = Maximum metaxylem size
MX_num = Number of metaxylem vessels
CF_num = Number of cell files
CCA = Cortex cell area
percCisCC = Percentage of cortex that is cortical cells
percXSisCC = Percentage of cross section that is cortical cells
CC_mean = Mean cortical cell size
CC_median = Median cortical cell size
CC_num = Number of cortical cells
Z0andEpi_mean = Mean of all cells in zone zero and the epidermis
Z0_mean = Mean of all cells in zone zero (edge)
Z1_mean = Mean of all cells in zone one (middle)
Z2_mean = Mean of all cells in zone two (center)
Z0andEpi_median = Median of all cells in zone zero and the epidermis
Z0_median = Median of all cells in zone zero (edge)
Z1_median = Median of all cells in zone one (middle)
Z2_median = Median of all cells in zone two (center)
Z0andEpi_num = Number of all cells in zone zero and the epidermis
Z0_num = Number of all cells in zone zero (edge)
Z1_num = Number of all cells in zone one (middle)
Z2_num = Number of all cells in zone two (center)
LA_mean = Mean lacunae size
LA_median = Median lacunae size
LA_min = Minimum lacunae size
LA_max = Maximum lacunae size
LA_num = Number of lacunae
Files start counting from 0 at the epidermis
Ratings indicate image quality, 0 the worst, 10 the best
Digital Imaging of Root Traits(DIRT)是一个使用DIRT成像协议计算70多种表型特征的计算机平台,其主要思路是通过计算机处理根系图片给出表型特征,这种方法作为2014年10月的Plant Physiology的封面,其软件平台2015年11月上线PlantMethods。
具体的测定表型特征可见官方入门手册
Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. science, 330(6001), 192-196.
Cao, H., Sun, H., Yang, H., Sun, B., & Zhao, Q. (2003). A review: soil enzyme activity and its indication for soil quality. Chinese journal of applied and environmental biology, 9(1), 105-109.
Ge, T., Wei, X., Razavi, B. S., Zhu, Z., Hu, Y., Kuzyakov, Y., . . . Wu, J. (2017). Stability and dynamics of enzyme activity patterns in the rice rhizosphere: Effects of plant growth and temperature. Soil Biology and Biochemistry, 113, 108-115. doi:10.1016/j.soilbio.2017.06.005
German, D. P., Weintraub, M. N., Grandy, A. S., Lauber, C. L., Rinkes, Z. L., & Allison, S. D. (2011). Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43(7), 1387-1397. doi:10.1016/j.soilbio.2011.03.017
Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., . . . Zhang, F. S. (2010). Significant Acidification in Major Chinese Croplands. science, 327(5968), 1008-1010. Retrieved from https://science.sciencemag.org/content/sci/327/5968/1008.full.pdf. doi:10.1126/science.1182570
Kawasaki A, D. S., Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016). Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One, 11:e0164533.
Kuzyakov, Y., & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184-199. doi:10.1016/j.soilbio.2015.01.025
Kuzyakov, Y., & Razavi, B. S. (2019). Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology and Biochemistry, 135, 343-360. doi:10.1016/j.soilbio.2019.05.011
Liu, S., Razavi, B. S., Su, X., Maharjan, M., Zarebanadkouki, M., Blagodatskaya, E., & Kuzyakov, Y. (2017). Spatio-temporal patterns of enzyme activities after manure application reflect mechanisms of niche differentiation between plants and microorganisms. Soil Biology and Biochemistry, 112, 100-109. doi:10.1016/j.soilbio.2017.05.006
Ma, X., Liu, Y., Zarebanadkouki, M., Razavi, B. S., Blagodatskaya, E., & Kuzyakov, Y. (2018). Spatiotemporal patterns of enzyme activities in the rhizosphere: effects of plant growth and root morphology. Biology and Fertility of Soils, 54(7), 819-828. doi:10.1007/s00374-018-1305-6
Ma, X., Mason-Jones, K., Liu, Y., Blagodatskaya, E., Kuzyakov, Y., Guber, A., . . . Razavi, B. S. (2019). Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots. Soil Biology and Biochemistry, 135, 420-428. doi:10.1016/j.soilbio.2019.06.001
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., . . . Marinari, S. (2012). Soil enzymology: classical and molecular approaches. Biology and Fertility of Soils, 48(7), 743-762. doi:10.1007/s00374-012-0723-0
Nobuo Watanabe, D. A. D., Rui-Ming Liu, Henry Jay Forman. (2004). Quinones and Glutathione Metabolism.
Razavi, B. S., Zarebanadkouki, M., Blagodatskaya, E., & Kuzyakov, Y. (2016). Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities. Soil Biology and Biochemistry, 96, 229-237. doi:10.1016/j.soilbio.2016.02.020
Razavi, B. S., Zhang, X., Bilyera, N., Guber, A., & Zarebanadkouki, M. (2019). Soil zymography: Simple and reliable? Review of current knowledge and optimization of the method. Rhizosphere, 11. doi:10.1016/j.rhisph.2019.100161
Sinsabaugh, R. L., Belnap, J., Findlay, S. G., Shah, J. J. F., Hill, B. H., Kuehn, K. A., . . . Warnock, D. D. (2014). Extracellular enzyme kinetics scale with resource availability. Biogeochemistry, 121(2), 287-304. doi:10.1007/s10533-014-0030-y
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., . . . Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecol Lett, 11(11), 1252-1264. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18823393. doi:10.1111/j.1461-0248.2008.01245.x
Spohn, M., & Kuzyakov, Y. (2013). Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – Coupling soil zymography with 14C imaging. Soil Biology and Biochemistry, 67, 106-113. doi:10.1016/j.soilbio.2013.08.015
Tian, P., Razavi, B. S., Zhang, X., Wang, Q., & Blagodatskaya, E. (2020). Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology and Biochemistry, 141. doi:10.1016/j.soilbio.2019.107662
Wei, X., Ge, T., Zhu, Z., Hu, Y., Liu, S., Li, Y., . . . Razavi, B. S. (2018). Expansion of rice enzymatic rhizosphere: temporal dynamics in response to phosphorus and cellulose application. Plant and Soil, 445(1-2), 169-181. doi:10.1007/s11104-018-03902-0
Zhu, Z., Ge, T., Liu, S., Hu, Y., Ye, R., Xiao, M., . . . Wu, J. (2018). Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO 2 and CH 4 emissions. Soil Biology and Biochemistry, 116, 369-377. doi:10.1016/j.soilbio.2017.11.001